Optimal quantum preparation contextuality in n-bit parity-oblivious multiplexing task

Alok Kumar Pan

Collaborator: Shouvik Ghorai

ISNFQC18
February 2, 2018

Outline of the talk

(1) Ontological model of an operational theory
(2) Parity oblivious multiplexing (POM) task in brief
(3) 3-bit quantum POM task
(4) n-bit quantum POM task
(5) Summary

Outline of the talk

(1) Ontological model of an operational theory

(2) Parity oblivious multiplexing (POM) task in brief
(3) 3-bit quantum POM task

4 n-bit quantum POM task
(5) Summary

Operational theory

Preparation
 P

$p(k \mid P, M) \Rightarrow$ Probability of occurance of outcome $k \in \mathcal{K}_{M}$ with $P \in \mathcal{P}$ and $M \in \mathcal{M}$.

Ontological model of operational theory

Preparation
P

Measurement
$\boldsymbol{p}(\boldsymbol{k} \mid \boldsymbol{P}, M)$

Preparation procedure P prepares ontic state $\lambda \in \Lambda$ according to the distribution $\mu(\lambda \mid P)$ satisfying $\int_{\Lambda} \mu(\lambda \mid P) d \lambda=1$.

Given a M, λ assings a response function $\xi(k \mid M, \lambda)$ satisfying $\sum_{k \in \mathcal{K}_{\mathcal{M}}} \xi(k \mid M, \lambda)=1$.

$$
p(k \mid P, M)=\int_{\lambda \in \Lambda} \mu(\lambda \mid P) \xi(k \mid M, \lambda) d \lambda
$$

Equivalence class of experimental procedures

An ontological model of operational theory is non-contextual if

Operational equivalence of two experimental procedures

Spekkens, PRA (2005).

Equivalence class of of experimental procedures

Equivalence class of Measurements $\left(M \equiv M^{\prime}\right)$:
$\forall k, \forall P \quad p(k \mid P, M)=p\left(k \mid P, M^{\prime}\right) \quad \Rightarrow \quad \xi(k \mid M, \lambda)=\xi\left(k \mid M^{\prime}, \lambda\right)$

Equivalence class of Preparations $\left(P \equiv P^{\prime}\right)$:
$\forall k, \forall M \quad p(k \mid P, M)=p\left(k \mid P^{\prime}, M\right) \quad \Rightarrow \quad \mu(\lambda \mid P)=\mu\left(\lambda \mid P^{\prime}\right)$
Assumption of preparation non-contextuality (PNC)in ontological model.

Ontological model of Quantum Theory

Preparation produces ρ and measurement is described by POVM E_{k}.

$$
p(k \mid P, M)=\operatorname{Tr}\left[\rho E_{k}\right] \text { (Born-Dirac rule) }
$$

Ontological model of QM:

$$
\begin{gathered}
P \leftrightarrow \mu_{P}(\lambda \mid \rho) \\
M \leftrightarrow \xi_{M}\left(k \mid \lambda, E_{k}\right) . \\
\forall \rho, \forall E_{k}, \forall k \quad \int_{\Lambda} \mu_{P}(\lambda \mid \rho) \xi_{M}\left(k \mid \lambda, E_{k}\right) d \lambda=\operatorname{Tr}\left[\rho E_{k}\right]
\end{gathered}
$$

Ontological model of QM and non-contextuality

- Measurement non-contextual
$\forall P, \forall k \quad p(k \mid P, M)=p\left(k \mid P, M^{\prime}\right) \quad \Rightarrow \quad \xi_{M}\left(k \mid \lambda, E_{k}\right)=\xi_{M^{\prime}}\left(k \mid \lambda, E_{k}\right)$
M and M^{\prime} are two disticnt precedures realizing E_{k}.

Kochen-Speaker Non-contextuality: Measurement non-contextuality + outcome determinism for sharp measurement

Measurement non-contextuality (along with or without determinism) and its quantum violation has been extensively studied.

Ontological model of QM and non-contextuality

- Preparation non-contextual
$\forall M, \forall k \quad p(k \mid P, M)=p\left(k \mid P^{\prime}, M\right) \quad \Rightarrow \quad \mu_{P}(\lambda \mid \rho)=\mu_{P^{\prime}}(\lambda \mid \rho)$
P and P^{\prime} are two distinct preparation procedures.

Ex:

$$
\mu_{P}(\lambda \mid \mathbb{I} / 2)=\mu_{P^{\prime}}(\lambda \mid \mathbb{I} / 2)
$$

Outline of the talk

(1) Ontological model of an operational theory
(2) Parity oblivious multiplexing (POM) task in brief
(3) 3-bit quantum POM task

4 n-bit quantum POM task
(5) Summary

Parity oblivious multiplexing (POM) task

It is variant of Random Access Code.
(1) Alice has an n-bit string x chosen uniformly at random from $\{0,1\}^{n}$.
(2) Bob chooses any bit $y \in\{1,2, \ldots, n\}$ and recover the bit x_{y} with a probability.
(3) The condition of the task is, Bob's output must be the bit $b=x_{y}$ ($y^{\text {th }}$ bit of Alice's input string).
(9) Alice and Bob try to optimize the guessing probability $P\left(b=x_{y}\right)$.
(5) Parity oblivious constraint: no information about any parity of x can be transmitted to Bob.

POM task

Define a parity set $\mathbb{P}_{n}:=\left\{z \mid z \in\{0,1\}^{n}, \sum_{y} z_{y} \geq 2\right\}$.
Parity oblivious constraint: For any $s \in \mathbb{P}_{n}$, no information about $s . x=\oplus_{y} s_{y} x_{y}$ (s-parity) is to be transmitted to Bob, where \oplus is sum modulo 2.

We then have a s-parity 0 set and a s-parity 1 set.

Ex: For $\{0,1\}^{2}, \mathbb{P}=\{11\}$. No information about s. $x=x_{1} \oplus x_{2}$ will be transmitted to Bob.
s-parity 0 set is $\{00,11\}$ and s-parity 1 set is $\{01,10\}$
R. W. Spekkens, D. H. Buzacott, A. J. Keehn, B. Toner and G. J. Pryde Phys. Rev. Lett. 102, 010401 (2009).

Average success probability of POM task

The average success probability is

$$
\begin{equation*}
p\left(b=x_{y}\right)=\frac{1}{2^{n} n} \sum_{x, y} p\left(b=x_{y} \mid P_{x}, M_{y}\right) \tag{2}
\end{equation*}
$$

The parity-obliviousness condition guarantees that there are no outcome of any measurement for which the probabilities for s-parity 0 and s-parity 1 are different. Mathematically,

$$
\begin{equation*}
\forall s \forall M \forall k \sum_{x \mid x . s=0} p\left(P_{x} \mid k, M\right)=\sum_{x \mid x . s=1} p\left(P_{x} \mid k, M\right) . \tag{3}
\end{equation*}
$$

It is proved that

$$
\begin{equation*}
p\left(b=x_{y}\right) \leq \frac{n+1}{2 n} \tag{4}
\end{equation*}
$$

Average success probability of POM task

Let Alice always tells Bob the first bit but still no information about the parity is transmitted.

- If $y=1$, occurring with probability $1 / n$, Bob can predict the outcome with certainty
- If $y \neq 1$, occurring with probability of $\frac{n-1}{n}$, he at best guesses the bit with probability $1 / 2$.
- The total probability of success is $1 / n+(n-1) / 2 n=(n+1) / 2 n$.

PNC model and POM task

The parity oblivious condition in operational theory is PNC assumption in ontological model.

In a preparation non-contextual (PNC) model,

$$
\sum_{x \mid x . s=0} p\left(\lambda \mid P_{x}\right)=\sum_{x \mid x . s=1} p\left(\lambda \mid P_{x}\right)
$$

The success probability in a PNC model for n-bit POM task satisfies

$$
p\left(b=x_{y}\right)_{p n c} \leq \frac{n+1}{2 n}
$$

Quantum POM task

In QM, Alice encodes her n-bit string of $x \in\left\{1,2, \ldots, 2^{n}\right\}$ into pure quantum states ρ_{x}, prepared by procedure P_{x}.

After receiving the state ρ_{x}, for every $y \in\{1,2, \ldots, n\}$, Bob performs a dichotomic measurement M_{y} and reports the outcome b as his output.

- For 2-bit POM task: $p_{Q}^{o p t}=(1 / 2)(1+1 / \sqrt{2})>p\left(b=x_{y}\right)_{p n c}=3 / 4$.
- 3-bit POM task: $p_{Q}=(1 / 2)(1+1 / \sqrt{3})$ but left its optimality as open question.

Quantum POM task

- Even POM task is shown to be equivalent to an INDEX game if some conditions are additionally satisfied and then using semidefinite program p_{Q} is optimized. Optimal value is $p_{Q}^{\text {opt }}=(1 / 2)(1+1 / \sqrt{n})$.
A. Chailloux, I. Kerenidis, S. Kundu and J. Sikora, New J. Phys.18, 045003(2016).
- 2-bit POM task reduces to a CHSH game and $p_{Q}^{o p t}$ is obtained at optimal violation of CHSH inequality.
M. Banik et al., Phys. Rev. A, 92, 030103(R) (2015).
- n-bit POM with d outcomes has been studied and showed $P\left(b=x_{y}\right)_{p n c} \leq(n+d-1) / n d$. As regards the quantum POM task, they provide explicit example for $d=3$ which reduces to CGLMP game.
A. Hameedi, A. Tavakoli, B. Marques and M. Bourennane, PRL, 119, 220402 (2017)

Quantum POM task

- We adopt similar approach of Banik et al. to obtain the optimal success probability for n-bit POM task.
- We first demonstrate that 3-bit quantum POM task reduces to task of optimaizing the quantum vioation of (4×3) elegant Bell's inequality [Gisin].
- For n-bit quantum POM task, the success probability can be shown to be dependent on a curious form of $\left(2^{n-1} \times n\right)$ elegant Bell's inequality.
- We use an interesting approach to optimize the quantum violation of $\left(2^{n-1} \times n\right)$ inequality.

Outline of the talk

(1) Ontological model of an operational theory
(2) Parity oblivious multiplexing (POM) task in brief
(3) 3-bit quantum POM task

4 n-bit quantum POM task
(5) Summary

3- bit quantum POM task

Parity set $\mathbb{P}_{n}=\left\{z \mid z \in\{0,1\}^{n}, \sum_{y} z_{y} \geq 2\right\}$.
PO condition: $s \in\{011,101,110,111\}$, no information about $s . x=\oplus_{y} s_{y} x_{y}$ (s-parity) will be transmitted to Bob.

For $s=110$, the s-parity 0 set is $\{000,001,110,111\}$ and s-parity 1 set is $\{010,100,011,101\}$.

The parity obliviousness in QM :

$$
\begin{align*}
\rho & =\frac{1}{4}\left(\rho_{000}+\rho_{111}+\rho_{110}+\rho_{001}\right) \tag{5}\\
& =\frac{1}{4}\left(\rho_{010}+\rho_{101}+\rho_{011}+\rho_{100}\right)
\end{align*}
$$

3- bit quantum POM task

Consider a shared entangled state $\rho_{A B}=\left|\psi_{A B}\right\rangle\left\langle\psi_{A B}\right| \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}$. Alice's projective measurements: $\left\{P_{A_{i}}, I-P_{A_{i}}\right\}$ where $i=1,2,3,4$

$$
\begin{array}{ll}
\frac{1}{2} \rho_{000}=\operatorname{Tr}_{1}\left[\left(P_{A_{1}} \otimes I\right) \rho_{A B}\right] & \frac{1}{2} \rho_{111}=\operatorname{Tr}_{r_{1}}\left[\left(I-P_{A_{1}} \otimes I\right) \rho_{A B}\right] \\
\frac{1}{2} \rho_{001}=\operatorname{Tr}_{1}\left[\left(P_{A_{2}} \otimes I\right) \rho_{A B}\right] & \frac{1}{2} \rho_{110}=\operatorname{Tr}_{r_{1}}\left[\left(I-P_{A_{2}} \otimes I\right) \rho_{A B}\right] \\
\frac{1}{2} \rho_{010}=\operatorname{Tr}_{r_{1}}\left[\left(P_{A_{3}} \otimes I\right) \rho_{A B}\right] & \frac{1}{2} \rho_{101}=\operatorname{Tr}_{r_{1}}\left[\left(I-P_{A_{3}} \otimes I\right) \rho_{A B}\right] \\
\frac{1}{2} \rho_{100}=\operatorname{Tr}_{r_{1}}\left[\left(P_{A_{4}} \otimes I\right) \rho_{A B}\right] & \frac{1}{2} \rho_{011}=\operatorname{Tr}_{r_{1}}\left[\left(I-P_{A_{4}} \otimes I\right) \rho_{A B}\right] .
\end{array}
$$

3- bit quantum POM task

After receiving the particle from Alice, Bob performs three projective measurements $\left\{P_{B_{y}}, I-P_{B_{y}}\right\}$ in order to guess the Alice's bit, with $y=1,2,3$.

If qubit system used for encoding and decoding, $p_{Q}=(1 / 2)(1+1 / \sqrt{3})$

$$
\begin{gathered}
A_{1}=\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) / \sqrt{3}, \quad A_{2}=\left(\sigma_{x}+\sigma_{y}-\sigma_{z}\right) / \sqrt{3} \\
A_{3}=\left(\sigma_{x}-\sigma_{y}+\sigma_{z}\right) / \sqrt{3}, \quad A_{4}=\left(-\sigma_{x}+\sigma_{y}+\sigma_{z}\right) / \sqrt{3} \\
B_{1}=\sigma_{x}, \quad B_{2}=-\sigma_{y} \text { and } B_{3}=\sigma_{z} \\
\text { Is } P_{Q} \text { optimal ? }
\end{gathered}
$$

3- bit quantum POM task

Let Alice and Bob share the entangled state $\left|\Psi_{A B}\right\rangle$. Then,

$$
\begin{align*}
p_{Q} & =\frac{1}{24}\left(\operatorname{Tr}\left[\rho_{000} P_{B_{1}}\right]+\operatorname{Tr}\left[\rho_{000} P_{B_{2}}\right]+\operatorname{Tr}\left[\rho_{000} P_{B_{3}}\right]\right. \\
& +\operatorname{Tr}\left[\rho_{001} P_{B_{1}}\right]+\operatorname{Tr}\left[\rho_{001} P_{B_{2}}\right]+\operatorname{Tr}\left[\rho_{001}\left(I-P_{B_{3}}\right)\right] \\
& +\operatorname{Tr}\left[\rho_{010} P_{B_{1}}\right]+\operatorname{Tr}\left[\rho_{010}\left(I-P_{B_{2}}\right)\right]+\operatorname{Tr}\left[\rho_{010} P_{B_{3}}\right] \\
& +\operatorname{Tr}\left[\rho_{100}\left(I-P_{B_{1}}\right)\right]+\operatorname{Tr}\left[\rho_{100} P_{B_{2}}\right]+\operatorname{Tr}\left[\rho_{100} P_{B_{3}}\right] \\
& +\operatorname{Tr}\left[\rho_{011} P_{B_{1}}\right]+\operatorname{Tr}\left[\rho_{011}\left(I-P_{B_{2}}\right)\right]+\operatorname{Tr}\left[\rho_{011}\left(I-P_{B_{3}}\right)\right] \\
& +\operatorname{Tr}\left[\rho_{101}\left(I-P_{B_{1}}\right)\right]+\operatorname{Tr}\left[\rho_{101} P_{B_{2}}\right]+\operatorname{Tr}\left[\rho_{101}\left(I-P_{B_{3}}\right)\right] \\
& +\operatorname{Tr}\left[\rho_{110}\left(I-P_{B_{1}}\right)\right]+\operatorname{Tr}\left[\rho_{110}\left(I-P_{B_{2}}\right)\right]+\operatorname{Tr}\left[\rho_{110} P_{B_{3}}\right] \\
& \left.+\operatorname{Tr}\left[\rho_{111}\left(I-P_{B_{1}}\right)\right]+\operatorname{Tr}\left[\rho_{111}\left(I-P_{B_{2}}\right)\right]+\operatorname{Tr}\left[\rho_{111}\left(I-P_{B 3}\right)\right]\right) \tag{6}
\end{align*}
$$

3- bit quantum POM task

Quantum success probability: $p_{Q}=\frac{1}{2}\left(1+\frac{\left\langle\mathcal{B}_{3}\right\rangle_{Q}}{12}\right)$
where

$$
\begin{aligned}
\mathcal{B}_{3} & =\left(A_{1}+A_{2}+A_{3}-A_{4}\right) \otimes B_{1} \\
& +\left(A_{1}+A_{2}-A_{3}+A_{4}\right) \otimes B_{2} \\
& +\left(A_{1}-A_{2}+A_{3}+A_{4}\right) \otimes B_{3}
\end{aligned}
$$

In a local model, $\mathcal{B}_{3} \leq 6 \quad \Rightarrow \quad$ The elegant Bell inequality[Gisin].
N.Gisin, arXiv:quant-ph/0702021

3-bit quantum POM task

Optimal value of \mathcal{B}_{3} provides the optimal p_{Q}.

Define $\gamma_{3}=4 \sqrt{3} \mathbb{I}-\mathcal{B}_{3}$ such that $\gamma_{3}=(\sqrt{3} / 2) \sum_{k=1}^{4} M_{k}^{\dagger} M_{k}$

$$
\begin{array}{ll}
M_{1}=\left(B_{1}+B_{2}+B_{3}\right) / \sqrt{3}-A_{1}, & M_{2}=\left(B_{1}+B_{2}-B_{3}\right) / \sqrt{3}-A_{2} \\
M_{3}=\left(B_{1}-B_{2}+B_{3}\right) / \sqrt{3}-A_{3}, & M_{4}=\left(-B_{1}+B_{2}+B_{3}\right) / \sqrt{3}-A_{4}
\end{array}
$$

Since γ_{3} is positive semidefinite, then $\mathcal{B}_{3}=4 \sqrt{3} \mathbb{I}-\gamma_{3} \leq 4 \sqrt{3} \mathbb{I}$,

$$
p_{Q} \leq(1 / 2)(1+(1 / \sqrt{3}))
$$

A. Acin, S. Pironio, T. Vertesi, and P. Wittek, Phys. Rev. A 93, 040102(R) (2016)

3- bit quantum POM task

Quantum success probability: $\quad p_{Q}=\frac{1}{2}\left(1+\frac{\left\langle\mathcal{B}_{3}\right\rangle_{Q}}{12}\right)$

$$
\begin{aligned}
\mathcal{B}_{3} & =\left(A_{1}+A_{2}+A_{3}-A_{4}\right) \otimes B_{1} \\
& +\left(A_{1}+A_{2}-A_{3}+A_{4}\right) \otimes B_{2} \\
& +\left(A_{1}-A_{2}+A_{3}+A_{4}\right) \otimes B_{3}
\end{aligned}
$$

One can write

$$
\begin{aligned}
& \left(A_{1}+A_{2}+A_{3}-A_{4}\right) \otimes \mathbb{I}=\sqrt{3} B_{1} \otimes \mathbb{I} \\
& \left(A_{1}+A_{2}-A_{3}+A_{4}\right) \otimes \mathbb{I}=\sqrt{3} B_{2} \otimes \mathbb{I} \\
& \left(A_{1}-A_{2}+A_{3}+A_{4}\right) \otimes \mathbb{I}=\sqrt{3} B_{3} \otimes \mathbb{I}
\end{aligned}
$$

Then, $\left.\mathcal{B}_{3}=\frac{4}{\sqrt{3}}\left(B_{1} \otimes B_{1}+B_{2} \otimes B_{2}+B_{3} \otimes B_{3}\right)\right)$

Outline of the talk

(1) Ontological model of an operational theory
(2) Parity oblivious multiplexing (POM) task in brief
(3) 3-bit quantum POM task

4 n-bit quantum POM task
(5) Summary

n-bit quantum POM task

Alice chooses her bit x^{δ} randomly from $\{0,1\}^{n}$ with $\delta \in\left\{1,2 \ldots 2^{n}\right\}$.
The relevant set $\mathcal{D}_{n}=\left\{x^{\delta} \mid x^{i} \oplus x^{j}=11 \ldots 1, i+j=2^{n}+1\right\}$ where $i, j \in \delta$. Here, $x^{1}=00 \ldots 00, x^{2}=00 \ldots 01, \ldots$.

The parity set: $\mathbb{P}_{n}=\left\{x^{\delta} \mid x^{\delta} \in\{0,1\}^{n}, \sum_{r} x_{r}^{\delta} \geq 2\right\}$ and we consider $x^{s}=1100 \ldots 00$.

Aice performs 2^{n-1} projective measurements $\left\{P_{A_{i}}, \mathbb{I}-P_{A_{i}}\right\}$ on the entangled state $\rho_{A B}=\left|\psi_{A B}\right\rangle\left\langle\psi_{A B}\right|$ to encode her n-bits into 2^{n} pure quantum states are

$$
\begin{equation*}
\rho_{x^{i}}=\operatorname{tr}_{A}\left[\left(P_{A_{i}} \otimes \mathbb{I}\right) \rho_{A B}\right] ; \quad \rho_{x^{j}}=\operatorname{tr}_{A}\left[\left(\mathbb{I}-P_{A_{i}} \otimes \mathbb{I}\right) \rho_{A B}\right] \tag{7}
\end{equation*}
$$

n-bit quantum POM task

Bob's measurements:

$$
M_{y}^{i, j}= \begin{cases}P_{B_{y}}, & \text { when } x_{y}^{i, j}=0 \\ \mathbb{I}-P_{B_{y}}, & \text { when } x_{y}^{i, j}=1\end{cases}
$$

The success probability

$$
p_{Q}=\frac{1}{2^{n} n} \sum_{y=1}^{n} \sum_{i=1}^{2^{n-1}} p\left(b=x_{y}^{i} \mid \rho_{x^{i}}, M_{y}^{i}\right)+p\left(b=x_{y}^{j} \mid \rho_{x^{j}}, M_{y}^{j}\right)
$$

n-bit quantum POM task

In QM, we have

$$
p_{Q}=\frac{1}{2^{n} n} \sum_{y=1}^{n} \sum_{i=1}^{2^{n-1}} \operatorname{tr}\left[\rho_{x^{i}} M_{y}^{i}\right]+\operatorname{tr}\left[\rho_{x^{j}} M_{y}^{j}\right]
$$

Since $\forall i, j, x^{i} \oplus x^{j}=111 \ldots 111$ we have $x_{y}^{i} \oplus x_{y}^{j}=1$, then

$$
\begin{aligned}
p_{Q} & =\frac{1}{2^{n} n} \sum_{y=1}^{n} \sum_{i=1}^{2^{n-1}}(-1)^{x_{y}^{i}} \operatorname{tr}\left[\left(\rho_{x^{i}}-\rho_{x^{j}}\right) P_{B_{y}}\right]+\operatorname{tr}\left[\rho_{x^{\left(i, x_{y}^{i}+j . x_{y}^{j}\right)}}\right] \\
& =\frac{1}{2}+\frac{1}{2^{n} n} \sum_{i, y}(-1)^{x_{y}^{i}}\left\langle A_{i} \otimes B_{y}\right\rangle+\frac{1}{2^{n} n} \sum_{i, y}(-1)^{x_{y}^{i}}\left\langle A_{i} \otimes I\right\rangle
\end{aligned}
$$

n-bit quantum POM task

Optimaizing $\left\langle\mathcal{B}_{n}\right\rangle_{Q}=\sum_{i, y}(-1)^{x_{y}^{i}}\left\langle A_{i} \otimes B_{j}\right\rangle$ optimizes the sucess probability.

$$
\text { In a local model, } \quad \mathcal{B}_{n} \leq \sum_{r=0}^{\left[\frac{n-1}{2}\right]}(n-2 r)(n r)
$$

In order to optimize \mathcal{B}_{n} we define,

$$
\gamma_{n}=2^{n-1} \sqrt{n} \mathbb{I}-\mathcal{B}_{n}
$$

γ_{n} can be written as

$$
\gamma_{n}=\frac{\sqrt{n}}{2} \sum_{k=1}^{2^{n-1}} M_{k}^{\dagger} M_{k} ; \text { with } M_{k}=\sum_{y}(-1)^{x_{y}^{k}} \frac{B_{y}}{\sqrt{n}}-A_{k}
$$

n-bit quantum POM task

If $A_{k}^{\dagger} A_{k}=\mathbb{I}=B_{y}^{\dagger} B_{y}$, then γ_{n} is positive semidefinite.

Which in turn provides

$$
\mathcal{B}_{n} \leq 2^{n-1} \sqrt{n} \mathbb{I}
$$

Hence, the quantum success probability for n-bit POM task satisfies

$$
p_{Q} \leq \frac{1}{2}\left(1+\frac{1}{\sqrt{n}}\right)
$$

Can n-bit POM task be optimized for qubit system?

When $n=4$

$$
\begin{gathered}
p_{Q}=\frac{1}{2}\left(1+\frac{\left\langle\mathcal{B}_{4}\right\rangle}{32}\right) \\
\mathcal{B}_{4}=\left(A_{1}+A_{2}+A_{3}+A_{4}-A_{5}+A_{6}+A_{7}+A_{8}\right) \otimes B_{1} \\
+\left(A_{1}+A_{2}+A_{3}-A_{4}+A_{5}+A_{6}-A_{7}-A_{8}\right) \otimes B_{2} \\
+\left(A_{1}+A_{2}-A_{3}+A_{4}+A_{5}-A_{6}+A_{7}-A_{8}\right) \otimes B_{3} \\
+\left(A_{1}-A_{2}+A_{3}+A_{4}-A_{5}-A_{6}-A_{7}+A_{8}\right) \otimes B_{4} \\
\mathcal{B}_{4}=\frac{8}{\sqrt{4}} \sum_{i=1}^{4} B_{i} \otimes B_{i}
\end{gathered}
$$

When $n=4$

$$
B_{1}=\sigma_{x} \otimes \sigma_{x}, B_{2}=-\sigma_{x} \otimes \sigma_{y}, B_{3}=\sigma_{x} \otimes \sigma_{z} \text { and } B_{4}=-\sigma_{y} \otimes I
$$

$$
A_{1}=\frac{1}{2}\left(\sigma_{x} \otimes \sigma_{x}+\sigma_{x} \otimes \sigma_{y}+\sigma_{x} \otimes \sigma_{z}+\sigma_{y} \otimes I\right)
$$

$$
A_{2}=\frac{1}{2}\left(\sigma_{x} \otimes \sigma_{x}+\sigma_{x} \otimes \sigma_{y}+\sigma_{x} \otimes \sigma_{z}-\sigma_{y} \otimes I\right)
$$

$$
A_{3}=\frac{1}{2}\left(\sigma_{x} \otimes \sigma_{x}+\sigma_{x} \otimes \sigma_{y}-\sigma_{x} \otimes \sigma_{z}+\sigma_{y} \otimes I\right)
$$

$$
A_{4}=\frac{1}{2}\left(\sigma_{x} \otimes \sigma_{x}-\sigma_{x} \otimes \sigma_{y}+\sigma_{x} \otimes \sigma_{z}+\sigma_{y} \otimes I\right)
$$

$$
A_{5}=\frac{1}{2}\left(-\sigma_{x} \otimes \sigma_{x}+\sigma_{x} \otimes \sigma_{y}+\sigma_{x} \otimes \sigma_{z}+\sigma_{y} \otimes I\right)
$$

$$
A_{6}=\frac{1}{2}\left(\sigma_{x} \otimes \sigma_{x}+\sigma_{x} \otimes \sigma_{y}-\sigma_{x} \otimes \sigma_{z}-\sigma_{y} \otimes I\right)
$$

$$
A_{7}=\frac{1}{2}\left(\sigma_{x} \otimes \sigma_{x}-\sigma_{x} \otimes \sigma_{y}+\sigma_{x} \otimes \sigma_{z}-\sigma_{y} \otimes I\right)
$$

$$
A_{8}=\frac{1}{2}\left(\sigma_{x} \otimes \sigma_{x}-\sigma_{x} \otimes \sigma_{y}-\sigma_{x} \otimes \sigma_{z}+\sigma_{y} \otimes I\right)
$$

Outline of the talk

(1) Ontological model of an operational theory
(2) Parity oblivious multiplexing (POM) task in brief
(3) 3-bit quantum POM task

4 n-bit quantum POM task
(5) Summary

Summary

- We studied the n-bit quantum POM task. The quantum success probability is shown to be larger than the PNC bound.
- We drive the optimal success probability for n-bit POM task by using an interesting approach
- For the POM task $n>3$ qubit system is not useful. Higher dimensional system is requited to achieve the optimal bound.
- Our optimization approach may be generalised for d outcome scenrio which will be studied in future.

Thank you.

